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There is a tension in the field of cognitive development. 
Children perform worse than adults on many measures. 
As they grow older, children become more focused, they 
plan better, and, of course, they know more. Yet very 
young children are prodigious learners, and they are 
especially good at learning about causes. Preschoolers, 
toddlers, and even infants construct everyday causal the-
ories about objects, living things, and minds (e.g., 
Wellman & Gelman, 1992; Gopnik & Meltzoff, 1997). 
How can the youngest children learn so much so quickly 
and accurately when their knowledge and cognitive abil-
ities seem so limited?

We suggest that the apparent limitations in children’s 
knowledge and cognitive abilities may actually some-
times make them better learners. Empirically, we have 
recently found a similar pattern across different problems 
and age ranges. Younger learners are, surprisingly, better 
than older ones at inferring unlikely or unusual abstract 
causal hypotheses from evidence.

There are some other examples of this counterintuitive 
developmental pattern. Younger infants can learn distinc-
tions between sounds that are not used in their native lan-
guage better than older infants and adults (Kuhl, 2004; 
Werker, Yeung, & Yoshida, 2012), and younger children 
are better at generating alternative uses for a tool than 
older children (Defeyter & German, 2003). These findings 

also suggest that younger learners might sometimes be 
open to more possibilities than older ones.

Theoretically, we propose two possible complemen-
tary explanations for this pattern, inspired by viewing 
children’s learning through the lens of computer science. 
Younger learners may do better because they are less 
biased by their existing knowledge, or because their 
brains and minds are inherently more flexible.

Empirical Studies

Many studies have shown that children as young as 15 
months old can learn specific cause-effect relationships 
from statistical data (Gopnik et al., 2004; Gopnik & 
Schulz, 2007; Gopnik & Wellman, 2012; Gweon & Schulz, 
2011). These studies have shown the typical develop-
mental pattern—either younger and older children per-
form similarly, or older children do better. In the new 
studies we describe here, we investigated whether chil-
dren can use patterns of data to infer more abstract, gen-
eral causal principles, or overhypotheses—that is, 
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hypotheses about which kinds of more specific hypoth-
eses are likely (Griffiths & Tenenbaum 2007; Kemp, 
Perfors, & Tenenbaum, 2007).

For example, suppose you observe that stomachaches 
are caused by eating bad food, rashes by touching weeds, 
and coughs by inhaling pollen. You might form the overhy-
pothesis, or “framework theory” (Gopnik & Wellman, 2012), 
that illnesses have biological causes. When you then seek 
the cause of a new illness, such as AIDS, you might think 
biological causes such as viruses, bacteria, or genes are 
more likely than psychological causes such as anxiety.

In the kind of studies we report here, learners see a 
series of events and choose between two abstract hypoth-
eses, A and B, that could explain those events. Hypothesis 
A initially seems less likely than B, at least from the adult 
perspective, but it is better supported by the evidence the 
learner has seen. Younger learners turn out to be more 
likely to infer A than older learners, who, despite the 
data, are more likely to stick with B.

The first study exhibiting this pattern explored how 
preschoolers learn high-level principles of social cogni-
tion (Seiver, Gopnik, & Goodman, 2013). Adults in 
Western cultures believe that actions are caused by per-
sonal traits that are stable over time but differ among 
individual people, such as bravery or timidity. Western 
adults explain what people do in terms of such traits 
even when the evidence shows that people are actually 
reacting to particular situations—in other words, they 
have a “trait bias” (Kelley, 1967). We gave 4- and 6-year-
old children statistical evidence that supported either a 
trait or situation explanation (Seiver et al., 2013). In the 
“person” condition, a character called Sally (represented 
by a doll) was usually willing to play on both a skate-
board and a diving board (represented by miniature 
toys), while a character called Josie usually avoided both 
toys. This data pattern supported the hypothesis that 
something about Sally or Josie caused them to approach 
or avoid the toys. In the “situation” condition, neither 
character approached the skateboard, though both 
approached the diving board, supporting the hypothesis 
that something about the toys caused the action pattern. 
In a control condition, the data supported both the “trait” 
and “situation” hypotheses equally. Then we asked chil-
dren why each character approached or avoided the toy.

Four-year-olds accurately inferred the right kind of 
cause from the data (Fig. 1). When the data supported a 
personal-trait explanation, the children did, too, often 
inventing trait-like causes (e.g., “Josie’s the little sister, 
and Sally’s the big one”). But they also said that the char-
acter acted because of the situation when that fit the 
data—“it looks scary” or “it looks fun.” Six-year-olds, in 
contrast, did much worse in the situation condition. Like 
adults, they showed a strong bias toward trait explana-
tions even when the evidence did not support them.

Notably, the children’s inferences extended beyond 
these particular dolls and toys. Their explanations 
invoked more general principles—older sisters are better 
than younger ones at many skills; people are unlikely to 
play with anything that looks scary. We also asked them 
to make predictions about new actors and situations. In 
the person condition, all the children said that the brave 
character would also be brave if she faced a new situa-
tion, such as jumping on a trampoline. In the situation 
condition, 4-year-olds followed the data and predicted 
that Mary, a new character, would also be scared by the 
skateboard but not the diving board. However, 6-year-
olds thought the character would act the same in both 
situations, in spite of the data, consistent with a trait bias.

In another series of studies, participants had to infer an 
abstract principle about a machine that played music when 
you put some combinations of blocks on top of it and not 
others (Lucas, Bridgers, Griffiths, & Gopnik, 2014). The 
machine could work on an “individual” principle, such that 
some individual blocks made the machine work and some 
did not—each cause did or did not lead to the effect. Adults 
assume that causal systems work this way (Cheng, 1997), 
just as they assume that actions are caused by traits. But the 
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Fig. 1.  Mean number of person (vs. situation) attributions (out of two) 
among 4- and 6-year-olds as a function of condition (Seiver, Gopnik, & 
Goodman, 2013). Four-year–olds correctly explained actions in terms of 
personal traits in the person condition and in terms of situations in the 
situation condition. In a control condition, which supported both types 
of attributions equally, they were equally likely to choose either attribu-
tion (indicated by the dashed horizontal line). Six-year-olds showed a 
marked bias toward personal-trait explanations in the control and situ-
ation conditions. Error bars show standard errors.
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machine could also work on a more unusual “combination” 
principle, such that causes had to be combined to produce 
an effect: Some two-block combinations made the machine 
go, though individual blocks did not.

We showed 4-year-old children and adults an unam-
biguous pattern of events that supported one principle or 
the other. Then they saw an ambiguous pattern with a 
new set of blocks, which could be consistent with either 
the “individual” or the “combination” principle. Then we 
asked them to activate the machine.

If the machine worked on the combination principle, 
multiple blocks would be necessary to make it go; a sin-
gle block should suffice on the individual principle. 
Again, children had to generalize beyond particular 
hypotheses about which specific block combinations 
made the machine go and infer a general principle about 
how the machine worked.

Preschoolers correctly learned both the individual and 
combination principles from the unambiguous examples 
and used them to interpret the ambiguous new data and 
design the right action (Fig. 2a). The adults stuck with the 
individual principle even when the evidence weighed 
against it—they continued to place individual blocks on 
the machine even in the combination condition (Fig. 2b).

The third study looked at a different kind of abstract 
causal principle. Older children (and nonhuman pri-
mates) have difficulty with higher-order relational con-
cepts such as “same” and “different” (Gentner, 2010; 
Penn, Holyoak, & Povinelli, 2008). Chimpanzees quickly 
learn that a square stimulus leads to a reward while a 
round one does not, but they need hundreds of trials to 
learn that a reward follows when two stimuli are the 
same rather than different.

We gave 18- to 30-month-olds a causal higher-order 
relation problem (Walker & Gopnik, 2013, 2014). A 
machine played music when an experimenter put two 
similar blocks on it but not when she put two different 
blocks on, or vice versa. Toddlers then had to choose 
between two novel pairs of blocks—one pair of two simi-
lar blocks and one pair of two different blocks—to acti-
vate the machine.

Surprisingly, these toddlers were adept at the task, in 
contrast to the older children in previous studies. Then 
we gave 3-year-olds exactly the same task as the toddlers. 
They performed at chance level. Further studies showed 
that this was because they assumed that the individual 
objects, rather than the relations between them, would 
activate the machine, in spite of the data.
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Fig. 2.  Children’s and adults’ choices of objects to activate a machine after seeing evidence that a machine operates according to an 
individual or combination principle (Lucas, Bridgers, Griffiths, & Gopnik, 2014). When both age groups saw evidence for a combina-
tion principle, meaning that two or more objects were necessary to activate the machine, only children tended to choose multiple 
objects to activate the machine (a). In contrast, adults tended to choose only one object, despite the evidence (b). When both age 
groups saw evidence for an individual principle, meaning that only one object was necessary to activate the machine, both children 
and adults tended to choose a single object to place on the machine, consistent with the evidence.
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So, the same counterintuitive pattern emerged across 
all three studies. But why would children perform worse 
as they grow older? This is still an open question, but we 
propose two potential explanations below.

A lot of knowledge can be a  
dangerous thing

First, the very fact that older learners know more may make 
it more difficult for them to learn something new. Once a 
learner has inferred a general principle (e.g., that people act 
because of their traits, or that individual objects, rather than 
combinations of objects or relations between them, have 
causal powers), that principle may constrain his or her inter-
pretation of new data. Causal relationships that conflict with 
that principle may then be more difficult to learn.

Probabilistic-model-based approaches to cognitive 
development can provide a more precise version of this 
idea (for more on such approaches see, e.g., Gopnik & 
Tenenbaum, 2007; Gopnik, 2012; Gopnik & Wellman, 
2012; Kushnir & Xu, 2012; Tenenbaum, Kemp, Griffiths, 
& Goodman, 2011). A Bayesian learner assesses how 
likely various hypotheses are, given a pattern of new 
data. Learners do this by using Bayes’s rule to combine 
two probabilities. One is the prior probability of any par-
ticular hypothesis—how likely the hypothesis was before 
the learner saw the data. The other is the likelihood—
how likely it was that that hypothesis would have gener-
ated the new data.

As a result, if the prior probability distribution strongly 
favors one hypothesis—that is, if the learner initially 
thinks that hypothesis A is much more likely than B—
then the learner will need more evidence to overturn A 
and accept B instead. If the prior is “flat”—that is, if the 
learner initially thinks that A and B are equally likely—
then the learner will require less evidence to accept B.

In an extension of this idea, called hierarchical 
Bayesian learning (Griffiths & Tenenbaum, 2007), data at 
a more specific level, like the relations between stomach-
aches and food, can be used to learn a higher-level prin-
ciple—in this case, the overhypothesis that illnesses have 
biological causes. This kind of learning might explain the 
counterintuitive pattern in our studies.

From flexibility to efficiency

Another factor may be that as children grow older, there are 
changes in the way they learn that make them intrinsically 
less flexible and less able to attend to unusual possibilities. 
There are complementary computational, neuroscientific, 
and evolutionary reasons for thinking this might be true.

A Bayesian learner, whether that learner is a child or a 
computer, must have some technique for searching 
through the vast space of possible hypotheses and trying 

to find the most likely option. Recent studies have 
explored the search methods children might use (e.g., 
Bonawitz, Denison, Griffiths, & Gopnik, 2014; Denison, 
Bonawitz, Gopnik, & Griffiths, 2013).

Using an analogy to physics, computer scientists talk 
about different search “temperatures.” In “high-temperature” 
searches, the learner searches broadly but is less likely to 
“settle” on any one answer for long—the learner bounces 
widely around in the space of hypotheses like a molecule 
bouncing around in a hot liquid.

From a Bayesian perspective, raising the temperature 
of a search will have an effect equivalent to “flattening” 
the prior—initial differences among hypotheses will 
make less of a difference. In addition, however, it will 
have the effect of weakening the likelihoods.

High-temperature searches are wide ranging but very 
variable, and the learner can move away from good 
hypotheses as well as bad ones. Low-temperature 
searches are more likely to quickly lead to “good enough” 
hypotheses. However, the learner risks getting stuck in a 
“local minimum”—passing up potentially better but more 
unusual hypotheses that are further away from his or her 
initial guess.

One way to compromise between the advantages and 
drawbacks of high and low temperature is to start with a 
high-temperature search and gradually “cool off.” This is 
called simulated annealing in computer science, by anal-
ogy to the heating and cooling that leads to robustness in 
metallurgy (Kirkpatrick, Gelatt, & Vecchi, 1983). By 
beginning with a high-temperature search, a learner can 
explore the possibilities more widely before focusing 
more narrowly on the likely candidates.

If children initially perform high-temperature searches 
and gradually “cool off” to perform low-temperature 
ones as they grow older, this might explain why younger 
learners sometimes infer unusual hypotheses better than 
older learners. How could we discriminate between this 
simulated-annealing idea and the related flat-prior idea? 
In Lucas et al. (2014), we included a “baseline” condition. 
Participants in this condition saw only the ambiguous 
events—they never saw the unambiguous new data that 
pointed to each principle. If adults initially thought that 
the “individual” hypothesis was more likely than the 
“combination” hypothesis, and children did not, that 
should have been reflected in this baseline condition. 
But, in fact, both children and adults preferred the “indi-
vidual” hypothesis initially. The difference seemed to be 
that children were more willing to switch to the alterna-
tive hypothesis. A Bayesian model consistent with the 
annealing possibility matched children’s judgments. 
However, more studies of the dynamics of learning are 
necessary to distinguish these possibilities.

Findings in neuroscience also mesh well with the anneal-
ing idea (e.g., Thompson-Schill, Ramscar, & Chrysikou, 
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2009). An early period of neural flexibility and plasticity is 
succeeded by a more narrow and inflexible, though more 
efficient, set of procedures. In particular, as children get 
older, frontal areas of the brain exert more control over 
other areas. This frontal control is associated with focused 
attention and better planning and executive control. 
However, this control has costs. Empirically, disruptions to 
frontal control, resulting in a more “child-like” brain, can 
actually lead to better performance in cognitive tasks that 
involve exploring a wide range of possibilities (e.g., 
Chrysikou et al., 2013). There may be an intrinsic trade-off 
between exploitation and exploration—between swift, 
focused, efficient adult action and wide-ranging, explor-
atory child-like learning.

A pattern of early cognitive exploration also makes 
sense from an evolutionary perspective. Across many 
species, flexibility, brain size, and intelligence are associ-
ated with a long, protected period of immaturity—a long 
childhood. Human beings have the largest brains, the 
most flexible intelligence, and the longest childhood of 
any species. One explanation for this distinctive life his-
tory is that an early protected period allows young organ-
isms to explore possibilities in an unconstrained way. 
This early exploratory learning, in turn, allows learners to 
act more effectively when they grow older (Buchsbaum, 
Bridgers, Weisberg, & Gopnik, 2012). Childhood may be 
evolution’s way of performing simulated annealing.

Adults may sometimes be better at the tried and true, 
while children are more likely to discover the weird and 
wonderful. This may be because as we get older, we both 
know more and explore less.
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